75 research outputs found

    Researchers at the Gate: Factors Influencing Districts’ Right of Entry Decisions

    Get PDF
    Background: The No Child Left Behind legislation creates an increased need for new school-based empirical studies whose implementation will depend largely on researchers’ access to various school populations and records. Access decisions are typically made by superintendents, or their designees, functioning as gatekeepers who control right of entry. Understanding the factors driving these decisions could enhance the desirability of proposals and increase access rates for quantitative and qualitative researchers alike. Purpose: The purpose of this research was to query districts about four key access factors including (a) researcher trustworthiness, (b) associated risks, (c) costs and benefits, and (d) potential contribution to the field. Research Method: This study used a series of interviews followed by a systematic survey. Participants: Ten superintendents were interviewed followed by a survey of 310 districts in Connecticut, Illinois, and Pennsylvania. Findings: Although trustworthiness was expected to supercede other factors, districts reported greater interest in elements of risk and in research having widespread educational value. Costs and material benefits (e.g., equipment, credit, and compensation) were not highly emphasized nor relatively important. Professional development, planning, and instructional benefits mattered more. Implications for Research and Practice: Given the increasing emphasis on scientifically based research for school decision-making and program reform, the present study is notable for two reasons. First, it provides researchers with insights into the decision-making process involved in granting permission to conduct research in the schools. Second, it can help to improve the quality of proposals received by school districts, thereby increasing the likelihood of positive right-of-entry decisions and resulting in better informed decisions

    Measuring the Reader Self-Perceptions of Adolescents: Introducing the RSPS2

    Get PDF
    This paper introduces a new affective instrument for assessing the reader self-perceptions of students in grades seven through ten. The Reader Self-Perception Scale 2 (RSPS2) builds upon its predecessor, the RSPS, a tool that measures the reading efficacy beliefs of children in grades four through six. New items were created for the RSPS2 to reflect differences in the expectations for adolescent reading. The instrument was piloted on 488 students, revised, and then validates with an additional 2,542 students in the target grades. Factor analytic procedures revealed four factors emerging on the RSPS2. Items for Progress, Observational Comparison, Social Feedback, and Physiological States clustered as expected into scales with reliabilities ranging from .87 to .95. The article includes a description of the instrument, an explanation of its possible uses in assessment, instruction, and research, as well as directions for administration, scoring, and interpretation

    The Influence of Accelerated Reader on the Affective Literacy Orientations of Intermediate Grade Students

    Get PDF
    Although the highly popular Accelerated Reader (AR) book reading incentive program claims to motivate children of all reading ability levels, very little independent empirical research has examined this assertion. To help fill this void, we used two related three-factor mixed designs with Method (AR vs. Control), Gender, and either Grade Level(fourth vs. fifth) or Reading Ability (high vs. low) to explore AR’s influence on the reading attitudes and self-perceptions of children in two comparable school districts. The analyses indicate that AR positively influenced academic reading attitudes, but not recreational ones, and that it negatively influenced two types of self-perceptions in low achieving male readers. These findings and others of consequence are discussed along with implications for future research

    Deep CCD Surface Photometry of Galaxy Clusters I: Methods and Initial Studies of Intracluster Starlight

    Full text link
    We report the initial results of a deep imaging survey of galaxy clusters. The primary goals of this survey are to quantify the amount of intracluster light as a function of cluster properties, and to quantify the frequency of tidal debris. We outline the techniques needed to perform such a survey, and we report findings for the first two galaxy clusters in the survey: Abell 1413, and MKW 7 . These clusters vary greatly in richness and structure. We show that our surface photometry reliably reaches to a surface brightness of \mu_v = 26.5 mags per arcsec. We find that both clusters show clear excesses over a best-fitting r^{1/4} profile: this was expected for Abell 1413, but not for MKW 7. Both clusters also show evidence of tidal debris in the form of plumes and arc-like structures, but no long tidal arcs were detected. We also find that the central cD galaxy in Abell 1413 is flattened at large radii, with an ellipticity of 0.8\approx 0.8, the largest measured ellipticity of any cD galaxy to date.Comment: 58 pages, 24 figures, accepted for publication in the Astrophysical Journal. Version has extremely low resolution figures to comply with 650k limit. High resolution version is available at http://burro.astr.cwru.edu/johnf/icl1.ps.gz Obtaining high resolution version is strongly reccomende

    Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa

    Get PDF
    This is the publisher’s final pdf. The article is copyrighted by the New Phytologist Trust and published by John Wiley & Sons, Inc. It can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291469-8137. To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.•Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype–genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination.\ud •We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29 213 single-nucleotide polymorphisms.\ud •Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r² dropping below 0.2 within 3–6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N[subscript e] ≈ 4000–6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features.\ud •Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    Investigation of G72 (DAOA) expression in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO), supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions.</p> <p>Methods</p> <p>The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth <it>in silico </it>analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability.</p> <p>Results</p> <p>Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis) human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala), spinal cord or testis. A detailed <it>in silico </it>analysis provides several lines of evidence that support the apparent low or absent expression of G72.</p> <p>Conclusion</p> <p>Our results suggest that native G72 protein is not normally present in the tissues that we analysed in this study. We also conclude that the lack of demonstrable G72 expression in relevant brain regions does not support a role for G72 in modulation of DAO activity and the pathology of schizophrenia via a DAO-mediated mechanism. <it>In silico </it>analysis suggests that G72 is not robustly expressed and that the transcript is potentially labile. Further studies are required to understand the significance of the G72/30 locus to schizophrenia.</p
    corecore